The Crl-RpoS Regulon of Escherichia coli*□S

نویسندگان

  • Cécile Lelong
  • Kryssia Aguiluz
  • Sylvie Luche
  • Lauriane Kuhn
  • Johannes Geiselmann
چکیده

The RpoS subunit of RNA polymerase controls the expression of numerous genes involved in stationary phase and in response to different stress conditions. The regulatory protein Crl increases the activity of RpoS by direct interaction with the RpoS holoenzyme. To define the extent of the Crl regulon, we used two-dimensional SDSPAGE to measure the role of Crl in regulating the expression of the Escherichia coli proteome in stationary phase at 30 °C. By comparing the proteome of four strains (wild type, crl , rpoS , and crl rpoS ), we observed that the intensity of 74 spots was modified in at least one mutant context. 62 spots were identified by mass spectrometry and correspond to 40 distinct proteins. They were classified in four main categories: DNA metabolism, central metabolism, response to environmental modifications, and miscellaneous. Three proteins were specifically involved in quorum sensing: TnaA (the tryptophanase that converts tryptophan to indole), WrbA (Trp repressor-binding protein), and YgaG (homologous to LuxS, autoinducer-2 synthase). Because little is known about the regulation of Crl expression, we investigated the influence of diffusible molecules on the expression of Crl. Using Western blotting experiments, we showed that, at 30 °C, a diffusible molecule(s) produced during the transition phase between the exponential and stationary phases induces a premature expression of Crl. Indole was tested as one of the potential candidates: at 37 °C, it is present in the extracellular medium at a constant concentration, but at 30 °C, its concentration peaks during the transition phase. When indole was added to the culture medium, it also induced prematurely the expression of Crl at both the transcriptional and translational levels in a Crl-dependent manner. Crl may thus be considered a new environmental sensor via the indole concentration. Molecular & Cellular Proteomics 6:648–659, 2007.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rpoS gene function is a disadvantage for Escherichia coli BJ4 during competitive colonization of the mouse large intestine.

The ability of Escherichia coli to survive stress during growth in different environments is, in large part, dependent on rpoS and the genes that comprise the rpoS regulon. E. coli BJ4 and an isogenic BJ4 rpoS mutant were used to examine the influence of the rpoS gene on E. coli colonization of the streptomycin-treated mouse large intestine. Colonization experiments in which the wild-type E. co...

متن کامل

Stress and survival of aging Escherichia coli rpoS colonies.

In Escherichia coli, the expression of the RpoS regulon is known to be crucial for survival in liquid cultures during stationary phase. By measuring cell viability and by transcriptome analysis, here we show that rpoS cells as well as wild-type cells survive when they form colonies on solid media.

متن کامل

Structure of the RNA polymerase assembly factor Crl and identification of its interaction surface with sigma S.

Bacteria utilize multiple sigma factors that associate with core RNA polymerase (RNAP) to control transcription in response to changes in environmental conditions. In Escherichia coli and Salmonella enterica, Crl positively regulates the σ(S) regulon by binding to σ(S) to promote its association with core RNAP. We recently characterized the determinants in σ(S) responsible for specific binding ...

متن کامل

The SOS and RpoS Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA Polymerase Pol II

Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coinc...

متن کامل

β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity

Regardless of their targets and modes of action, subinhibitory concentrations of antibiotics can have an impact on cell physiology and trigger a large variety of cellular responses in different bacterial species. Subinhibitory concentrations of β-lactam antibiotics cause reactive oxygen species production and induce PolIV-dependent mutagenesis in Escherichia coli. Here we show that subinhibitor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007